CMOS LSI

FM multiple tuner IC

http://onsemi.com

Overview

LC01707PLF is a vehicle-mounted FM multiple tuner IC with FM-FE, IF, IF-Filter, PLL, FM-DEMO and LPF incorporated. An FM multiple tuner can be developed with this one chip. It makes up a small-sized FM multiple tuners which can be mounted on PND.

Functions

- It is the FM tuner IC exclusively for the FM multiple.
- Image reduction complex BPF is incorporated
- Narrow Band IF AGC is incorporated
- Name Dead IF ACC is in a most of
- DLL detection method is adopted for the FM detection circuit, and it is not necessary to adjust.
- LPF for the carrier removal is incorporated.
- IC requires fewer external components.

• Wide / Narrow Band RF AGC is incorporated

• LNA is incorporated

Image rejection is adopted

• It is a BUS control tuner IC which can be controlled by controlled by I²C BUS.

Specifications

Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{DD} max		4.3	V
Maximum input voltage	V _{DD} H		4.3	V
Maximum output voltage	V _{DD} L		4.3	V
Power dissipation	Pd max	Ta = 85°C *1	700	mW
Operating ambient	Topr		-40 to 85	°C
Storage temperature	Tstg		-55 to 150	°C
Maximum junction temperature	Tj max		150	°C

^{*1:} Board size: 80mm × 70mm × 1.6mm Glass epoxy double-sided board

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Recommended Operating Conditions at Ta = 25°C

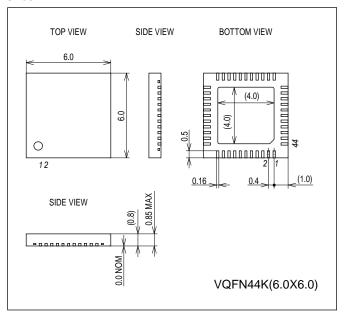
Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage range	V_{DD}		3.0 to 3.6	V
Recommended supply	V_{DD}		3.3	V
temperature				

Electrical Characteristics at Ta = 25 °C, $V_{DD} = 3.3$ V,

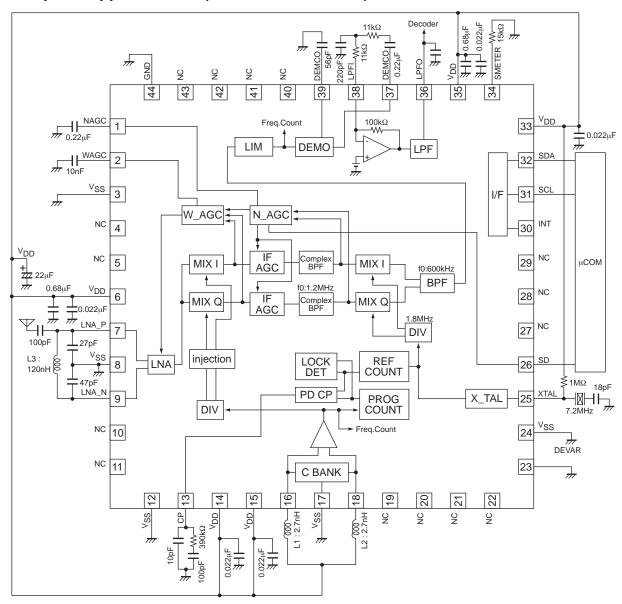
fc = 83MHz, VIN=60dBµVEMF, fm=1kHz, Audio filter: HPF=100Hz, LPF=15kHz

Resister setting: IF AGC (02h) =6(110), RF AGC (00h) =0(0000)

DLL demodulator loop gain setting (09h) =1(01), Mono multi center setting (09h) =7(0111)


				Ratings			
Parameter	Symbol Conditions		min	typ	max	Unit	
Practical sensitivity 1 (S/N30dB)	SN30	22.5kHz dev, fm=1kHz, S/N=30dB input level	I=30dB input level 12 20 dE		dBμEMF		
Practical sensitivity 2 (S/N10dB)	SN10	7.5kHz dev, fm=76kHz, S/N=10dB input level 27			dBμEMF		
S/N1	SN1	22.5kHz dev, fm=1kHz	34	44		dB	
S/N2	SN2	7.5kHz dev, fm=76kHz *1		21		dB	
Total harmonic distortion rate 1	THD_1	22.5kHz dev, fm=1kHz		0.5		%	
Total harmonic distortion rate 2	THD_2	75.0kHz dev, fm=1kHz		0.5		%	
AM suppression ratio	AMR	AM 30% mod	34	44		dB	
Image rejection ratio	IMR	22.5k\Hz dev, fm=1kHz		32		dB	
Audio output level 1	AD01	7.5kHz dev, fm=1kHz *1	26	39	70	mVrms	
Audio output level 2	AD02	7.5kHz dev, fm=76kHz *1	15	23	41	mVrms	
Consumption current	IDD	No signal input		106	170	mA	

^{*1:} Audio filter: HPF=100Hz, LPF=OFF


Package Dimensions

unit: mm (typ)

3408

Example of applied circuit (constant is tentative)

- * Culprits oscillation circuit is used in this IC as a crystal oscillation circuit. Caution is required for layout of the board because oscillation between pin25 and power source and GND line.
- * The margin of crystal oscillation changes due to the combination of the IC, a crystal oscillator and a board layout. This independent IC does not quarantine the oscillation operation.
- * This IC uses the signal of FM band frequency (VCO divided into 1/4) which leaks into ANT pin. If the VCO leakage affects the performance of the system, make sure to connect an isolator on ANT pin path.

Component	Parameter	Value	Туре	Supplier
L1/L2	Local OSC coil	2.7nH	C2012H-2N7D-RD	SAGAMI
L3	Differential input coil	120nH	C2012C-R12G-RC	SAGAMI
X1	Crystal	7.2MHz	SMD-49	KDS
			AT-49	KDS
			EXS00A-A01145	NDK
			EXS00A-A01146	NDK

Pin Description

Pin No.	Pin name	I/O	Function
1	NAGC	0	Narrow band AGC detection capacitance connecting pin
2	WAGC	0	Wide band AGC detection capacitance connecting pin
3	V _{SS}	Р	GND pin for IF
4	NC	-	
5	NC	-	
6	V_{DD}	Р	Supply pin for LNA
7	LNA_A	I	LNA +input pin
8	V _{SS}	Р	GND pin for LNA
9	LNA_N	I	LNA –input pin
10	NC	-	
11	NC	-	
12	V _{SS}	Р	GND pin for 1 st Mixer
13	СР	0	PLL charge pump capacitance connecting pin
14	V_{DD}	Р	Supply pin 1 st Mixer
15	V_{DD}	Р	Supply pin for local oscillation
16	LO_1	0	Inductor connecting pin for local oscillation
17	V _{SS}	Р	GND pin for local oscillation
18	LO_2	0	Inductor connecting pin for local oscillation
19	NC	-	
20	NC	-	
21	NC	-	
22	NC	-	
23	DEVER	I	Device address setting pin
24	V _{SS}	Р	GND pin for PLL and logic
25	XTAL	I	Crystal resonator connecting pin (Clock input pin)
26	SD	0	Station detector pin
27	NC	-	
28	NC	-	
29	NC	-	
30	INT	0	Test pin
31	SCL	I	Serial data clock input
32	SDA	I	serial data input-output
33	V _{DD}	Р	Supply pin for PLL and logic
34	SMETER	0	S-meter output
35	V_{DD}	Р	Supply pin for IF
36	LPFO	0	Demodulation output (after band limitation)
37	DEMOO	0	Demodulation output
38	LPFI	I	Demodulation signal input pin
39	DEMOC	0	Capacitance connecting pin for demodulation detection
40	NC	-	
41	NC	-	
42	NC	-	
43	NC	-	
44	GND	Р	GND pin

Pin Function

Pin No.	Pin name	Function	Equivalent circuit
1	NAGC	Narrow band AGC detection capacitor connection pin.	VDD φ VDD † 1kΩ 1kΩ
2	WAGC	Wide band AGC detection capacitor connection pin.	VDD ψ VDD ψ VDD 1kΩ
3	V _{SS}	GND pin for IF.	
4	NC	No connection.	
5	NC	No connection.	
6	V_{DD}	Supply pin for LNA.	
7	LNA_P	Pin 7 is + input pin for LNA.	l ∧DD ∧DD Å
8 9	V _{SS} LNA_N	Pin 8 is GND pin for LNA. Pin 9 is - input pin for LNA.	7
10	NC	No connection.	
11	NC	No connection.	
12	V _{SS}	GND pin 1st mixer for the 1 st mixer.	
13	СР	PLL charge pump capacitor connection pin.	VDD • VDD • VDD • VDD • VDD • S50kΩ • S0kΩ
14	V_{DD}	Supply pin for the 1 st mixer.	
15	V _{DD}	Supply pin for local oscillator.	

Continued from preceding page.

Pin No.	Pin name	Function	Equivalent circuit
16	LO_1	Pin 16 is inductor connection pin for local	
17	v _{ss}	oscillator.	(16) (17) (18) VDD VDD VDD VDD VDD VDD VDD VDD VDD VD
18	LO_2	Pin 17 is GND pin for local oscillator.	VDD TIME IN THE TOTAL TO
		Pin 18 is inductor connection pin for local	\ <u>\</u>
		oscillator.	Baca T T T T T T T T T T T T T T T T T T
			To Pin13
			200kΩ
			+ +
			<i>"</i>
19	NC	No connection.	
20	NC	No connection.	
21	NC	No connection.	
22	NC	No connection.	
23	DEVAR	Device address setting pin.	
			V _{DD} V _{DD}
			23
			30052
24	V _{SS}	PLL_logic GND pin.	
25	XTAL	Crystal oscillator connection pin (clock input	V _{DD ÷}
		pin).	V _{DD} L
			25 W 5pF
			33Ω 20pF 1 1MΩ \$
			10pF = -
			m ·
26	SD	Station detector pin.	
30	INT	Test monitor pin.	V _{DD} V _{DD}
			טעי טעי
			(30)(26)
			I
27	NC	No connection.	
28	NC	No connection.	
29	NC	No connection.	

Continued from preceding page.

Pin No.	Pin name	Function	Equivalent circuit
31	SCL	Serial data clock input.	V _{DD} φ 500Ω V _{DD} φ 500Ω V _{DD} φ
32	SDA	Serial data input/ output.	V _{DD} • · · · · · · · · · · · · · · · · · ·
33	V_{DD}	PLL_logic supply voltage pin.	
34	SMETER	S-meter output.	V _{DD}
35	V_{DD}	IF supply voltage pin	
36	LPFO	Demodulator output (After band limit).	V _{DD} 4pF 4pF 500Ω 70kΩ
37	DEMOO	Demodulator output.	V _{DD} 20.4pF 18.7kΩ 1pF 2kΩ
38	LPFI	Demodulator signal input pin.	VDD 100kΩ 1pF

Continued from preceding page.

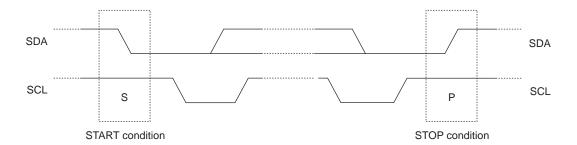
Pin No.	Pin name	Function	Equivalent circuit
39	DEMOC	Capacitor connection pin for demodulator detection.	39 VDD VDD 1kΩ 1kΩ
40	NC	No connection.	
41	NC	No connection.	
42	NC	No connection.	
43	NC	No connection.	
44	GND	GND pin.	V _{SS} (Pin_3) V _{SS} (Pin_8) V _{SS} (Pin_12) V _{SS} (Pin_17) V _{SS} (Pin_24)

Communication specification

Communication specifications are indicated as below:

Serial Interface (I²C-bus);

Sending and receiving data through I^2C -bus that consists of two bus lines of a serial data line (SDA) and a serial clock line (SCL). This bus enables 8-bit bi-directional serial data to transmit at the maximum speed of 400kbits (fast mode). This is not compatible with Hs mode.

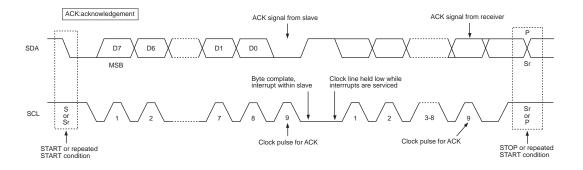

Terms used in I²C

The following terms are used in I²C

Terms	Description
Transmitter	Device to send data to the bus
Receiver	Device to receive from the bus
Master	Device to start data transmission, generate signal, and terminate data transmission
Slave	Device of which address is designated master

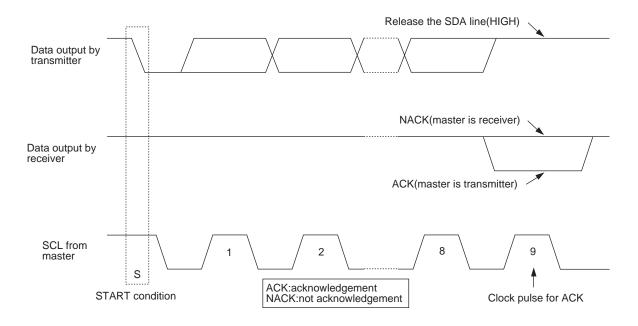
[Start] and [Stop] conditions

[Start] condition is required at the start of data communication and [Stop] condition at the end of data communication. The condition in which the SDA line changes from [H] to [L] with SCL at [H] is called the [Start] condition. The condition in which the SDA line changes from [L] to [H] with SCL at [H] is called the [Start] condition.



Data transmission

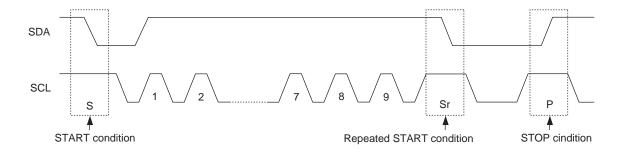
The length of each byte which is output to SDA line is always 8 bits. An acknowledge bit is needed after each byte. Data is transmitted sequentially from the most significant bit (MSB).


During the data transfer, the slave address is transmitted after the [Start] condition (S).

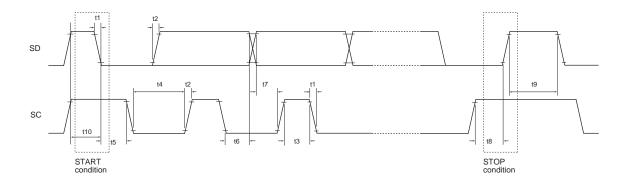
Data transfer is always ended by the [Stop] condition (P) generated by the master.

Acknowledge (Receive acknowledge)

When the master generates the acknowledge clock pulse, the transmitter opens the SDA line. (SDA line enters the [H] state.) When the acknowledge clock pulse is in the [H] state, the receiver sets the SDA line to [L] each time it receives one byte (eight bits) data. When the master works as a receiver, the master informs the slave of the end of data by omitting acknowledge at the end of data sent from the slave.



Software reset


If the communication is interrupted (microcomputer reset, etc.), it is possible to communicate normally by entering the below signals and resetting the CPU in software.

*These signal timings restore the communication after its interruption. The register setting is never reset.

*Software reset command is incompatible with I²C-bus format.

Electrical specification and timing for I/O stages

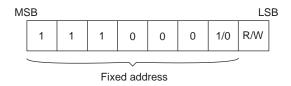
Bus line characteristics

Characteristic	Symbol	FAST-	FAST-MODE	
		min	max	
SCL clock frequency	fSCL		400	kHz
Fall time of SDA and SCL	t1	20+0.1Cb	300	ns
Rise time of SDA and SCL	t2	20+0.1Cb	300	ns
SCL "H" time	t3	0.6		μs
SCL "L" time	t4	1.3		μs
[Start] condition holding time	t5	0.6		μs
Data holding time for I ² C bus device	t6	0.3		μs
Data setup time	t7	0.1		μs
[Stop] condition setup time	t8	0.6		μs
Bus free time between [Stop] and [Start]	t9	1.3		μs
[Start] condition setup time	t10	0.6		μs
Bus line capacitive load	Cb		400	pF

Example at
SCL = 100kHz
100
3
7
10
3
10
20

Serial interface voltage level

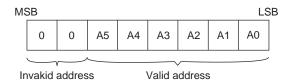
V_{DD}: Communication bus voltage


Characteristic	min	max	unit
High level input voltage	0.7V _{DD}	V_{DD}	V
Low level input voltage	0.0	0.3V _{DD}	V
High level output voltage (open drain)	V_{DD}	*2	V
Low level output voltage (open drain)	0.0	0.2V _{DD}	V

^{*2:} Output impedance of open drain becomes high at the high level output voltage. Output voltage equals to V_{DD} (voltage = V_{DD}) since drain is pulled up to V_{DD} .

Definition of each bit

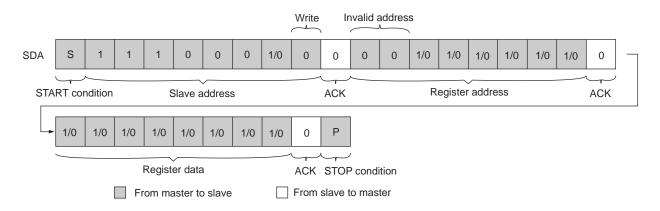
1) Slave address


The slave address consists of seven-bit fixed address "1110000" or "1110001", which is unique to a chip, and the eighth-bit data direction bit(R/W). Sending (writing) is processed when the data direction bit is "0", and receiving (reading) is processed when it is "1". The fixed address is set to "1110001" at DEVAR=1 and it is set to "1110000" at DEVAR=0.

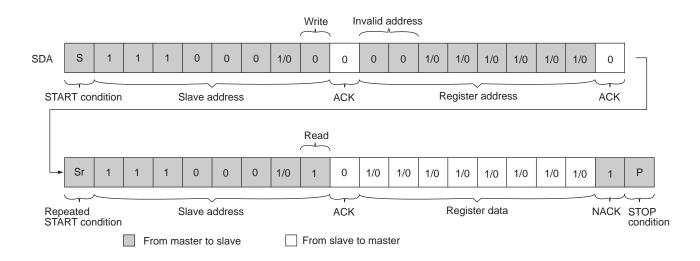
R/W	ВІТ
READ	1
WRITE	0

2) Register address

Since the total number of internal register is 34, 2-bit data set on the MSB side becomes invalid. 64 addresses are accepted 6 bits are used, but only 34 registers are used.


3) Register data

Each register data consists of eight bits.



Command Format

1) Individual registers data writing

2) Individual registers data reading

Register Map 1

DBPFO[2]

DBPFO[1]

DBPFO[0]

	* HEX	value is set by de	efault. : U	nused BIT		ı	
Register	DIT	Ditarana	Fination	Ditarrantian	Read/	Binary	Hex
address	BIT	Bit name	Function	Bit operation	Write	value	valu
00h	7					0	
	6	SD_SL[2]	SD level detection setting	0:DRS0 1:DRS1 2:DRS2 3:DRS3 4:DRS4 5:DRS5 6:DRS6 7:DRS7	R/W	0	
	5	SD_SL[1]			R/W	0	
	4	SD_SL[0]			R/W	0	h'0
	3	DWAG[3]	Wide band AGC level setting	0:15.6mVp-p 1:31.3mVp-p 2:46.9mVp-p 3:62.5mVp-p 4:78.1mVp-p 5:93.8mVp-p 6:109.4mVp-p 7:125.0mVp-p	R/W	0	
	2	DWAG[2]		8:140.6mVp-p 9:156.3mVp-p 10:171.9mVp-p 11:187.5mVp-p	R/W	0	
	1	DWAG[1]		12:203.1mVp-p 13:218.8mVp-p 14:234.4mVp-p 15:250mVp-p	R/W	0	
	0	DWAG[0]			R/W	0	
01h	7					0	
	6					0	
	5					0	
	4					0	h'0
	3					0	110
	2					0	
	1	IMSD_SL[1]	Unused			0	
	0	IMSD_SL[0]				0	
02h	7	CLKIN	XTAL current setting	1:Normal 0:Twice	R/W	1	
	6	DLOCKSEL	LOCKDET output waveform selection	1:Number of comparing 6 0:Munber of comparing 3	R/W	0	
	5	DFSEL[1]	Phase comparison frequency selection	0:100kHz 1:50kHz 2:50kHz 3:25kHz	R/W	0	
	4	DFSEL[0]			R/W	1	h'9
	3	ENPE	Entire circuit enable	1:ON 0:OFF (Entire circuit OFF)	R/W	1	118
	2	DNGA[2]	Narrow band AGC level setting	0:35mVp-p 1:111mVp-p 2:187mVp-p 3:263mVp-p 4:339mVp-p 5:415mVp-p 6:491mVp-p 7:567mVp-p	R/W	0	
	1	DNGA[1]		(When the setting value is ether 0 or 1 and MSK=4%, error is	R/W	0	
	0	DNGA[0]		detected in BER.)	R/W	1	
03h	7	ENCPLEVEL	Charge pump level comparison selection	1:ON 0:OFF	R/W	1	
	6	DENPRO	Program counter enable	1:ON 0:OFF	R/W	1	
	5	DENPD	Phase comparison enable	1:ON 0:OFF	R/W	1	
	4	DENCP	Charge pump enable	1:ON 0:OFF	R/W	1	
	3	DENREF	S-meter enable	1:ON 0:OFF	R/W	1	h'F
	2	DENXTAL	XTAL enable	1:ON 0:OFF	R/W	1	
	1	DEBDEMO	Demodulator enable	1:ON 0:OFF	R/W	1	
	0	ENFST	Complex BPF block, IF AGC block enable	1:ON 0:OFF	R/W	1	
04h	7	DENLEVELDET	Capacitor bank control circuit enable	1:ON 0:OFF	R/W	0	
	6	ENRFMIX	RFMIX enable	1:ON 0:OFF	R/W	1	
	5	ENIFLPF	IF LPF enable	1:ON 0:OFF	R/W	1	
	4	ENDET	Wide band AGC, Narrow band AGC block enable	1:ON 0:OFF	R/W	1	
	3	ENLNA	LNA block enable	1:ON 0:OFF	R/W	1	h'7
	2	DENSMETER	Reference counter enable	1:ON 0:OFF	R/W	1	
	1	DLOEN	Local oscillation enable	1:ON 0:OFF	R/W	1	
	0	DENPLL	PLL block enable	1:ON 0:OFF	R/W	1	
05h	7					0	
	6					0	
	5					0	
	4					0	
	3					0	h'0
	2					0	
	1	DNBAGC	IF AGC detection selector (Narrow band AGC)	1:ON 0:OFF	R/W	1	
	0	DWBAGC	RF AGC detection selector (Wide band AGC)	1:ON 0:OFF	R/W	1	
06h	7	DF0OSC[7]	Capacitor band value		R/W	1	
	6	DF0OSC[6]	Oscillation frequency adjustment for master time constant setting		R/W	0	
	5	DF0OSC[5]			R/W	0	
	4	DF0OSC[4]			R/W	0	
	3	DF0OSC[3]			R/W	0	h'8
	2	DF0OSC[2]			R/W	0	
	1	DF0OSC[1]			R/W	0	
	0	DF0OSC[0]			R/W	0	
)7h	7	DBPFO[7]	Capacitor bank value		R/W	1	
v:11	6	DBPFO[7]	Complex BPF F0 adjustment		R/W	0	
							
	5	DBPFO[5]			R/W	0	
	4	DBPFO[4]			R/W	0	h'8
	3	DBPFO[3]			R/W	0	l
	2	DBPEO[2]	i	1	R/W	. 0	

0

0

R/W

R/W

Register Map 2

Register		value is set by de	efault. : Unuse		Read/	Binary	Hex
address	BIT	Bit name	Function	Bit operation	Write	value	value
08h	7	D2BPF[7]	Capacitor bank value		R/W	1	10.00
	6	D2BPF[6]	2 nd IF BPF f0 adjustment		R/W	0	
	5	D2BPF[5]			R/W	0	1
	4	D2BPF[4]			R/W	0	
	3	D2BPF[3]			R/W	0	h'80
	2	D2BPF[2]			R/W	0	Ì
	1	D2BPF[1]			R/W	0	Ì
	0	D2BPF[0]			R/W	0	Ì
09h	7					0	
	6					0	
	5	DDEMOG[1]	DLL demodulator loop gain setting		R/W	0	
	4	DDEMOG[0]			R/W	1	
	3	DMONOC[3]	Mono multi center setting		R/W	0	h'17
	2	DMONOC[2]			R/W	1	Ī
	1	DMONOC[1]			R/W	1	1
	0	DMONOC[0]			R/W	1	
0Ah	7					0	
	6					0	
	5					0	
	4					0	
	3					0	h'02
	2					0	
	1	ENIMRSSI	XTAL OSC FET size setting	1:Normal 0:Twice	R/W	1	
	0	DIQC	Complex BPF injection changeover	1:lower 0:upper	R/W	0	
0Bh	7					0	
	6	DBL[6]	IQ balance adjustment		R/W	1	
	5	DBL[5]			R/W	0	
	4	DBL[4]			R/W	0	
	3	DBL[3]			R/W	0	h'40
	2	DBL[2]			R/W	0	
	1	DBL[1]			R/W	0	
	0	DBL[0]			R/W	0	
0Ch	7					0	
	6					0	
	5					0	
	4					0	
	3	DCP1REF[3]	Charge pump output current value setting	0:0.1mA 1:0.2mA 2:0.3mA 3:0.4mA 4:0.5mA 5:0.6mA 6:0.7mA	R/W	1	h'0A
	2	DCP1REF[2]		7:0.8mA 8:0.9mA A:1mA B:1.1mA C:1.2mA D: unused E: unused F: unused	R/W	0	
	1	DCP1REF[1]		E: unused F: unused		1	†
	0		1		R/W	1	
op.		DCP1REF[0]			R/W R/W	0	
0Dh	7	DCP1REF[0] DPCNT_L[7]	N value of frequency divider (low 8 bits)				
UDN			N value of frequency divider =		R/W	0	
UDN	7	DPCNT_L[7]	N value of frequency divider = ((4 × received frequency)±(4 × 1 st IF frequency)) / (4 channel × step frequency)		R/W R/W	0 *	
ODN	7 6	DPCNT_L[7] DPCNT_L[6]	N value of frequency divider = ((4 × received frequency)±(4 × 1 st IF frequency)) /		R/W R/W R/W	0	
ODn	7 6 5	DPCNT_L[7] DPCNT_L[6] DPCNT_L[5]	N value of frequency divider = ((4 × received frequency)±(4 × 1 st IF frequency)) / (4 channel × step frequency)		R/W R/W R/W	0	h'**
ODN	7 6 5 4	DPCNT_L[7] DPCNT_L[6] DPCNT_L[5] DPCNT_L[4]	N value of frequency divider = ((4 × received frequency)±(4 × 1 st IF frequency)) / (4 channel × step frequency)		R/W R/W R/W R/W		h'**
obn	7 6 5 4 3	DPCNT_L[7] DPCNT_L[6] DPCNT_L[5] DPCNT_L[4] DPCNT_L[3]	N value of frequency divider = ((4 × received frequency)±(4 × 1 st IF frequency)) / (4 channel × step frequency)		R/W R/W R/W R/W R/W		h'**
obn .	7 6 5 4 3	DPCNT_L[7] DPCNT_L[6] DPCNT_L[5] DPCNT_L[4] DPCNT_L[3] DPCNT_L[2]	N value of frequency divider = ((4 × received frequency)±(4 × 1 st IF frequency)) / (4 channel × step frequency)		R/W R/W R/W R/W R/W R/W R/W R/W	0	h'**
0Eh	7 6 5 4 3 2	DPCNT_L[7] DPCNT_L[6] DPCNT_L[5] DPCNT_L[4] DPCNT_L[3] DPCNT_L[2] DPCNT_L[1]	N value of frequency divider = ((4 × received frequency)±(4 × 1 st IF frequency)) / (4 channel × step frequency)		R/W R/W R/W R/W R/W R/W R/W R/W R/W	0	h'**
	7 6 5 4 3 2 1	DPCNT_L[7] DPCNT_L[6] DPCNT_L[5] DPCNT_L[4] DPCNT_L[3] DPCNT_L[2] DPCNT_L[1] DPCNT_L[1]	N value of frequency divider = ((4 × received frequency)±4 × 1st F frequency)) / (4 channel × step frequency) 1st F frequency is 1.2MHz		R/W		h***
	7 6 5 4 3 2 1 0	DPCNT_L[7] DPCNT_L[6] DPCNT_L[5] DPCNT_L[4] DPCNT_L[3] DPCNT_L[2] DPCNT_L[1] DPCNT_L[1] DPCNT_L[0]	N value of frequency divider = ((4 × received frequency)±4 × 1st F frequency)) / (4 channel × step frequency) 1st F frequency is 1.2MHz		R/W	-	h'**
	7 6 5 4 3 2 1 0 7	DPCNT_L[7] DPCNT_L[6] DPCNT_L[5] DPCNT_L[4] DPCNT_L[3] DPCNT_L[2] DPCNT_L[1] DPCNT_L[1] DPCNT_L[0] DPCNT_L[7] DPCNT_H[6]	N value of frequency divider = ((4 × received frequency)±4 × 1st F frequency)) / (4 channel × step frequency) 1st F frequency is 1.2MHz		R/W		
	7 6 5 4 3 2 1 0 7 6 5	DPCNT_L[7] DPCNT_L[6] DPCNT_L[5] DPCNT_L[4] DPCNT_L[3] DPCNT_L[2] DPCNT_L[1] DPCNT_L[1] DPCNT_L[0] DPCNT_L[0] DPCNT_H[6] DPCNT_H[6]	N value of frequency divider = ((4 × received frequency)±4 × 1st F frequency)) / (4 channel × step frequency) 1st F frequency is 1.2MHz		RWW		h***
	7 6 5 4 3 2 1 0 7 6 5	DPCNT_L[7] DPCNT_L[6] DPCNT_L[5] DPCNT_L[4] DPCNT_L[3] DPCNT_L[2] DPCNT_L[1] DPCNT_L[1] DPCNT_L[0] DPCNT_H[6] DPCNT_H[6] DPCNT_H[4]	N value of frequency divider = ((4 × received frequency)±4 × 1st F frequency)) / (4 channel × step frequency) 1st F frequency is 1.2MHz		RWW		
	7 6 5 4 3 2 1 0 7 6 5 4	DPCNT_L[7] DPCNT_L[6] DPCNT_L[5] DPCNT_L[3] DPCNT_L[2] DPCNT_L[1] DPCNT_L[1] DPCNT_L[0] DPCNT_L[0] DPCNT_H[6] DPCNT_H[6] DPCNT_H[4] DPCNT_H[3]	N value of frequency divider = ((4 × received frequency)±4 × 1st F frequency)) / (4 channel × step frequency) 1st F frequency is 1.2MHz		RWW		
	7 6 5 4 3 2 1 0 7 6 5 4 3 2	DPCNT_L[7] DPCNT_L[6] DPCNT_L[5] DPCNT_L[4] DPCNT_L[3] DPCNT_L[2] DPCNT_L[1] DPCNT_L[0] DPCNT_H[7] DPCNT_H[6] DPCNT_H[6] DPCNT_H[4] DPCNT_H[3] DPCNT_H[2]	N value of frequency divider = ((4 × received frequency)±4 × 1st F frequency)) / (4 channel × step frequency) 1st F frequency is 1.2MHz		RWW		
	7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 1 0 7	DPCNT_L[7] DPCNT_L[6] DPCNT_L[4] DPCNT_L[3] DPCNT_L[2] DPCNT_L[1] DPCNT_L[0] DPCNT_L[0] DPCNT_H[7] DPCNT_H[6] DPCNT_H[4] DPCNT_H[3] DPCNT_H[2] DPCNT_H[1] DPCNT_H[1]	N value of frequency divider = ((4 × received frequency)±(4 × 1 st IF frequency)) / (4 channel x step frequency) * 1 st IF frequency is 1.2MHz N value of frequency divider (high 8 bits)		RWW		
0Eh	7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0	DPCNT_L[7] DPCNT_L[6] DPCNT_L[5] DPCNT_L[4] DPCNT_L[3] DPCNT_L[2] DPCNT_L[1] DPCNT_L[0] DPCNT_H[7] DPCNT_H[6] DPCNT_H[5] DPCNT_H[4] DPCNT_H[3] DPCNT_H[2] DPCNT_H[1]	N value of frequency divider = ((4 × received frequency)±4 × 1st F frequency)) / (4 channel × step frequency) 1st F frequency is 1.2MHz		RWW		
0Eh	7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 1 0 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	DPCNT_L[7] DPCNT_L[6] DPCNT_L[6] DPCNT_L[4] DPCNT_L[3] DPCNT_L[2] DPCNT_L[1] DPCNT_L[0] DPCNT_L[0] DPCNT_H[7] DPCNT_H[6] DPCNT_H[4] DPCNT_H[3] DPCNT_H[2] DPCNT_H[1] DPCNT_H[1] DPCNT_H[1] DPCNT_H[0] DCBANK_L[7]	N value of frequency divider = ((4 × received frequency)±(4 × 1 st IF frequency)) / (4 channel x step frequency) * 1 st IF frequency is 1.2MHz N value of frequency divider (high 8 bits)		RWW		
0Eh	7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 7 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7	DPCNT_L[7] DPCNT_L[6] DPCNT_L[4] DPCNT_L[3] DPCNT_L[2] DPCNT_L[1] DPCNT_L[1] DPCNT_L[0] DPCNT_H[7] DPCNT_H[6] DPCNT_H[4] DPCNT_H[3] DPCNT_H[2] DPCNT_H[1] DPCNT_H[1] DPCNT_H[0] DPCNT_H[0] DCBANK_L[6] DCBANK_L[6]	N value of frequency divider = ((4 × received frequency)±(4 × 1 st IF frequency)) / (4 channel x step frequency) * 1 st IF frequency is 1.2MHz N value of frequency divider (high 8 bits)		RWW		h
0Eh	7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 7 6 7 6 7 7 6 7 7 7 6 7 7 7 7 7 7 8 7 7 7 7	DPCNT_L[7] DPCNT_L[6] DPCNT_L[6] DPCNT_L[4] DPCNT_L[3] DPCNT_L[2] DPCNT_L[1] DPCNT_L[0] DPCNT_H[7] DPCNT_H[6] DPCNT_H[6] DPCNT_H[4] DPCNT_H[3] DPCNT_H[2] DPCNT_H[1] DPCNT_H[0] DCBANK_L[7] DCBANK_L[6] DCBANK_L[4]	N value of frequency divider = ((4 × received frequency)±(4 × 1 st IF frequency)) / (4 channel x step frequency) * 1 st IF frequency is 1.2MHz N value of frequency divider (high 8 bits)		RWW		
0Eh	7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6	DPCNT_L[7] DPCNT_L[6] DPCNT_L[6] DPCNT_L[1] DPCNT_L[2] DPCNT_L[1] DPCNT_L[1] DPCNT_L[0] DPCNT_H[7] DPCNT_H[6] DPCNT_H[8] DPCNT_H[8] DPCNT_H[2] DPCNT_H[1] DPCNT_H[1] DPCNT_H[1] DPCNT_H[1] DPCNT_H[0] DCBANK_L[7] DCBANK_L[6] DCBANK_L[4] DCBANK_L[4]	N value of frequency divider = ((4 × received frequency)±(4 × 1 st IF frequency)) / (4 channel x step frequency) * 1 st IF frequency is 1.2MHz N value of frequency divider (high 8 bits)		RWW		h
0Eh	7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 7 6 7 6 7 7 6 7 7 7 6 7 7 7 7 7 7 8 7 7 7 7	DPCNT_L[7] DPCNT_L[6] DPCNT_L[6] DPCNT_L[4] DPCNT_L[3] DPCNT_L[2] DPCNT_L[1] DPCNT_L[0] DPCNT_H[7] DPCNT_H[6] DPCNT_H[6] DPCNT_H[4] DPCNT_H[3] DPCNT_H[2] DPCNT_H[1] DPCNT_H[0] DCBANK_L[7] DCBANK_L[6] DCBANK_L[4]	N value of frequency divider = ((4 × received frequency)±(4 × 1 st IF frequency)) / (4 channel x step frequency) * 1 st IF frequency is 1.2MHz N value of frequency divider (high 8 bits)		RWW		h'**

Register Map 3

Register address	BIT	Bit name	Function	Bit operation	Read/ Write	Binary value	He valu
Oh	7				vviite	value 0	Vall
	6					0	
	5					0	
	4					0	١.
	3					0	h
	2					0	
	1					0	
	0	DCBANK_H[8]	Local oscillator capacitor bank setting (high 1 bit)		R/W	1	
1h	7					0	
	6					0	
	5					0	
	4	DCBEN	Unused			0	h'
	3	DLOALC[3]	Local oscillation level setting		R/W	1	
	2	DLOALC[2]			R/W	1	
	1	DLOALC[1]			R/W	1	
	0	DLOALC[0]			R/W	1	
2h	7					0	
	6	DENIFCOUNT	Frequency counter (analog block) enable	1:ON 0:OFF	R/W	0	
	5	DENF0OSC	f0 detection oscillation circuit enable	1:ON 0:OFF	R/W	0	
	4	DENIFFREQ	Logic part reference clock enable	1:ON 0:OFF	R/W	0	h'
	3					0	
	2	DSCTCOUNT[2]	Count frequency selection	0:unused 1:IF frequency 2:prescaler frequency 3:freacaler frequency 4:f0 detection oscillation frequency	R/W	0	
	1	DSCTCOUNT[1]		5:f0 detection oscillation frequency 6:unused 7:IF frequency	R/W	0	
	0	DSCTCOUNT[0]			R/W	0	
3h	7					0	
	6					0	
	5					0	4
	4					0	h'
	3				5.44	0	
	2	CTE	Counter start trigger	1:ON (frequency counter start) Charge to 0 automatically	R/W	0	
	1	GT[1]	Frequency counter gate time selection	0:4ms 1:8ms 2:32ms 3:64ms	R/W	0	
41	0	GT[0]	10.00007		R/W	1	
4h	7	LOFQ_L[7]	LO_COUNT value (low 8 bits) Measurement frequency = counter value / GT[ms]		R		<u>:</u>
	6	LOFQ_L[6]			R		
	5 4	LOFQ_L[5]			R R		
	3	LOFQ_L[4]			R		h'
	2	LOFQ_L[3]			R		
	1	LOFQ_L[2]			R		
	0	LOFQ_L[1]			R		
5h	7	LOFQ_L[0]	LO_COUNT value (upper 8 bits)		R		
JII	6	LOFQ_H[7] LOFQ_H[6]	LO_COONT value (upper o bits)		R		
	5	LOFQ_H[5]			R		
	4	LOFQ_H[4]			R		
	3	LOFQ_H[3]			R		h'
	2	LOFQ_H[2]			R		
	1	LOFQ_H[1]			R		
	0	LOFQ_H[0]			R		
5h	7	25. 22.46				0	
	6					0	
	5	COUNTSEL				0	
	4	LOCKDETSEL				1	
	3	LOCKDET_DIG				0	h'
	2	LOCKDET	LOCK detection	1:LOCK 0:UNLOCK	R/W	0	
	1	PHLEVEL[1]	Charge pump voltage level detection	0:less than 0.5V 1:0.5V to 2.8V 2:Unused 3:more than 2.8V	R/W	0	
	0	PHLEVEL[0]	· · · -		R/W	0	
7h	7					*	
	6						
	5						
	4						
	3	IMRSSI[3]	Reset detection circuit	0:reset 1:reset cancellation	R		h
	2	IMRSSI[2]			R		
	1	IMRSSI[1]			R		

Register Map 4

* HEX value is set by default.	: Unused BIT

Register		value is set by de	erauit. : Unused		Read/	Binary	Hex
address	BIT	Bit name	Function	Bit operation	Write	value	value
18h	7					0	
	6	DRS[6]	S-meter detection level	Detection range can be changed by setting to DNGA (02h)	R		
	5	DRS[5]			R	٠	
	4	DRS[4]			R		h'**
	3	DRS[3]			R		. "
	2	DRS[2]			R		
	1	DRS[1]			R		,
	0	DRS[0]			R	*	
19h	7	IFCOUNT_L[7]	IF count value (low 8 bits) 2 nd IF frequency measurement results		R		
	6	IFCOUNT_L[6]	2 If frequency freasurement results		R		
	5	IFCOUNT_L[5]			R	:	
	4	IFCOUNT_L[4]			R	·	h'**
	3	IFCOUNT_L[3]			R		
	1	IFCOUNT_L[2]			R R		
	0	IFCOUNT_L[1] IFCOUNT_L[0]			R		
1Ah	7	IFCOUNT_H[7]	IF count value (high 8 bits)		R		
	6	IFCOUNT_H[6]			R		
	5	IFCOUNT_H[5]			R		
	4	IFCOUNT_H[4]			R		
	3	IFCOUNT_H[3]			R		h'**
	2	IFCOUNT_H[2]			R	٠	
	1	IFCOUNT_H[1]			R		
	0	IFCOUNT_H[0]			R		
1Bh	7	IMCOUNT_L[7]	Unused		R		
		IMCOUNT_L[6]			R		
	5	IMCOUNT_L[5]			R	•	
	4	IMCOUNT_L[4]			R		h'**
	3	IMCOUNT_L[3]			R	*	
		IMCOUNT_L[2]			R		
		IMCOUNT_L[1]			R	•	
401	0	IMCOUNT_L[0]			R		
1Ch	6	IMCOUNT_H[7] IMCOUNT_H[6]	Unused		R R		
		IMCOUNT_H[5]			R		
	4	IMCOUNT_H[4]			R		
	3	IMCOUNT_H[3]			R		h'**
		IMCOUNT_H[2]			R		
	1	IMCOUNT_H[1]			R	٠	
	0	IMCOUNT_H[0]			R	*	
1Dh	7	F0_L[7]	f0 detection oscillation frequency count value (low 8 bits)		R	٠	
	6	F0_L[6]	Frequency measurement result for master time constant setting		R		
	5	F0_L[5]			R	·	,
		F0_L[4]			R		h'**
	3	F0_L[3]			R		
		F0_L[2]			R	:	
		F0_L[1]			R	· · · · ·	
1Eh	7	F0_L[0] F0_H[7]	f0 detection oscillation frequency count value (high 8		R R		
1511		F0_H[7]	bits)		R		
		F0_H[5]			R		
		F0_H[4]			R		
	3	F0_H[3]			R		h'**
		F0_H[2]			R		
		F0_H[1]			R		
	0	F0_H[0]			R		
1Fh	7					0	
	6					0	
	5					0	
	4					0	h'02
	3					0	
	2	DOUTSEL	Register for TEST		R/W	0	
	1	DCNTEST	Register for TEST		R/W	1	
	0	DOUTTEST	Register for TEST		R/W	0	

Continued from preceding page.

Register	BIT	Bit name	Function	Bit operation	Read/	Binary	Hex
address	ווט	Dit ridifie	1 direction	Dit operation	Write	value	value
20h	7					0	
	6	ERR2	Local oscillator capacitor bank control error flag 2		R/W	0	
	5	ERR1	Local oscillator capacitor bank control error flag 1		R/W	0	
	4	DCOSEL2	Local oscillator capacitor bank value changeover	1:cap bank control value 0:I ² C input value	R/W	0	
	3	DCOSEL1	Local oscillator capacitor bank control process changeover	1:correcting process after sequential comparison 0:No correcting process after sequential comparison	R/W	1	h'0A
	2	DCOSEL0	Local oscillator capacitor bank control process changeover (micro alignment)	1:micro adjustment process 0:No micro adjustment process	R/W	0	
	1	DWAITSEL[1]	PLL operation check wait time after local oscillator capacitor bank adjustment	0:200µs 1:400µs 2:800µs 3:1600µs	R/W	1	
	0	DWAITSEL[0]	capacitor bank adjustment		R/W	0	
21h	7					0	
	6					0	
	5	DENINT	Register for TEST		R/W	0	
	4	MASKSEL	Register for TEST		R/W	0	
	3	LOSEL	Register for TEST		R/W	1	h'0A
	2	INTPH	Register for TEST		R/W	0	
	1	INTIM	Register for TEST		R/W	1	
	0	INTLO	Register for TEST		R/W	0	
22h	7	TESTSEL[2]	Register for TEST		R/W	0	
	6	TESTSEL[1]	Register for TEST		R/W	0	
	5	TESTSEL[0]	Register for TEST		R/W	0	
	4	DSW	PLL loop filter ON/OFF	1:ON 0:OFF	R/W	1	
	3	TIMESEL2[1]	Local oscillator capacitor bank control correcting circuit	0:200µs 1: 400µs 2:800µs 3:1600µs	R/W	0	h'15
	2	TIMESEL2[0]	operation clock setting		R/W	1	
	1	TIMESEL[1]	Local oscillator capacitor bank control sequential	0:10μs 1: 20μs 2:40μs 3:80μs	R/W	0	
	0	TIMESEL[0]	comparison control operation clock setting		R/W	1	

SD pin specification

SD voltage level VDD: supply voltage

item	min	max	unit
High level output voltage	V _{DD} -0.8	v_{DD}	V
Low level output voltage	0	0.4	V

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equa

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Tuners category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

LV25700PM-MPB-E LA1773M-A-TLM-E LA1776M-MPB-E LA1781MD-B-MPB-E LA1837M-TLM-E TDA18215HN/C1Y TCC-106A-RT TCC-202A-RT LA1780MA-A-MPB-E MAX2172ETL+ TCP-4127UB-DT MAX2112ETI+T LA1781ML-MPB-E TEF6635HW/V106K LV25810PEB-6156H TCC-206A-RT TCP-5033UB-DT TDA7786 TDA7703TR LV23201T-TLM-E LA1867NM-MPB-E MAX2160ETL+ MAX2135AETN MAX2112ETI+ MAX2169ETL+ MAX2121ETI+ MAX2120CTI+ MAX2112CTI+ LV23014T-A-TLM-E MAX2135AETN/V+ TDA18250BHN/C1K TDA18250HN/C1,557 MAX2112ETI MAX2121ETI MAX2120CTI MAX2112CTI TDA18250AHN/C1,557 TCP-5068UB-DT TCP-5082UB-DT TCP-5056UB-DT TCP-5018UB-DT CX24118A-12Z,557 SI2141-B10-GM SI2151-A10-GMR MAX2223ETI+ MAX2170ETL+ MAX2171ETL+ TDA18250BHNC1K TEF6606T/V5,518 LV25200M-MPB-E